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ABSTRACT

In the 1990s Land Mobile Radio (LMR) systems evolved from
analog frequency modulation (FM) to standardised digital systems.
Both digital and analog FM systems now co-exist in various ser-
vices and exhibit similar speech quality. The architecture of many
digital radios retains the analog FM modulator and demodulator
from legacy analog radios, but driven by a multi-level digital pulse
train rather than an analog voice signal. We denote this architecture
baseband FM (BBFM). In this paper we describe a modern machine
learning approach that uses an autoencoder to send high quality, 8
kHz bandwidth speech over the BBFM channel. The speech quality
is shown to be superior to analog FM over simulated LMR channels
in the presence of fading, and a demonstration of the system running
over commodity UHF radios is presented.

1. INTRODUCTION

Many land mobile radio (LMR) systems [1] for push to talk (PTT)
VHF/UHF voice are built on radio hardware employing the base-
band frequency modulation (BBFM) architecture. Applications for
LMR include public safety (police, fire, ambulance services), com-
mercial (taxis, mining industry, transport), and personal (off road
recreational vehicles, amateur radio). Analog frequency modulation
(FM) remains popular (e.g. millions of radios in Australia alone)
because of its speech quality, low cost, interoperability and ability
to operate without infrastructure. Key requirements for LMR are
speech quality, spectral efficiency, and robustness to fading due to
vehicle or hand held radio movement. Weak signal/low SNR perfor-
mance is a secondary requirement.

The ubiquitous BBFM radio architecture still enjoys a great deal
of popularity over more modern SDR designs for several reasons:

1. It is inexpensive, a complete handset may retail for $USD40.

2. Insensitive to frequency and phase offsets, frequency accu-
racy, and modulation index. Low cost frequency references
can be used.

3. Transmitter compliance with spurious emissions require-
ments is easier than SDRs as there is no carrier feed through,
or DAC and mixer non-linearities.

4. Only coarse (frame sync) and fine timing estimation is re-
quired - no phase or frequency estimation, making demodu-
lator implementation straight forward and robust.

5. The waveform can be also generated and received by modern
IQ SDR radios, so offers a degree of future proofing.

∗Supported by a grant from Amateur Radio Digital Communications

The speech quality of digital LMR systems employing the
BBFM architecture is close to analog FM [2][3]; has not evolved
since the mid 1990s; and is constrained to an audio bandwidth of
less than 4 kHz. Alternatives for higher speech quality include
enhancements to LTE 4G communications to support public safety
applications [4] such as mission critical PTT (MCPTT). However
these systems require handsets with a parallel, non BBFM radio
architecture, and cannot operate in remote areas without LTE cover-
age, or in simplex (handset to handset) mode.

This paper describes a radio autoencoder [5] derived from the
RDO-VAE structure of DRED [6]. It sends 8 kHz bandwidth speech
over the same BBFM architecture as existing analog and digital
LMR systems, but with significant improved speech quality and ro-
bustness to fading. Borrowing from our HF work [7], we denote the
machine learning parts of the system RADE (RADio autoEncoder).
Other approaches using machine learning (ML) to send speech over
radio channels include the very low latency work of [8]. Our work
differs in the focus on the BBFM channel for the LMR use case,
and the use of a vocoder feature set rather than direct encoding of
speech.
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Fig. 2. Radio Autoencoder over BBFM System

Consider the land mobile radio (LMR) system based on classical
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DSP shown in Figure 1. Speech with a bandwidth of around 3 kHz
is sampled at 8 kHz and compressed to a low bit rate using a speech
encoder. Forward error correction (FEC) adds redundant bits to pro-
tect the sensitive payload speech bits from channel errors. Fram-
ing (not illustrated) concatenates several speech encoder frames and
adds frame sync and signalling information such as station ID. Pay-
load bits are mapped to a discretely valued (2 or 4 level) sequence of
analog shift keyed (ASK) symbols driving an analog FM modulator.
The symbols may be filtered to minimise inter-symbol interference
(ISI) and constrain the spectrum of the transmitted signal. The re-
ceiver employs a limiter and analog FM demodulator to recover the
symbols, which are converted to bits with a slicer. The FEC decoder
attempts to correct any bit errors, and the speech decoder converts
the signal back into a sampled speech signal for replay over a loud-
speaker.

Figure 2 presents a radio autoencoder for the BBFM channel. A
feature extractor takes speech sampled at 16 kHz and generates a set
of vocoder feature vectors (short term spectrum, pitch, voicing) f .
The RADE encoder uses a neural network to directly generate a vec-
tor of ASK symbols z from the feature vectors f . These ASK sym-
bols are sent over the BBFM channel to the RADE decoder which
transforms them back to vocoder features f̂ . We employ the FAR-
GAN vocoder [9] for high quality speech synthesis with an audio
bandwidth of 8 kHz.

Our contributions are:

1. A neural network (radio autoencoder) for sending speech over
the BBFM channel that significantly outperforms classical
analog and digital alternatives.

2. A neural network for sending high quality, 8 kHz bandwidth
speech over the BBFM channel, more than double the audio
bandwidth of classical analog and digital alternatives.

3. An autoencoder that combines the classical DSP functions
of quantisation and channel coding to generate discrete time
but continuously valued (analog) ASK symbols directly from
vocoder features. Unlike classical approaches there is no
intermediate bit stream, and the ASK symbols (Figure 3)
emerge from the training process rather than being members
of a well defined, discrete constellation.

4. A linear approximation of the BBFM channel to support
training and simulation of ML networks.

The design of the ML components is presented in Section 2.
The FM modulation and demodulation process is highly non-linear.
In Section 3 we develop a linearised model for ASK pulses over
BBFM when the radio signal is subject to AWGN and fading chan-
nel impairments. We then describe how this model is used to train
the radio autoencoder in Section 4. In Section 5 we use automatic
speech recognition (ASR) to evaluate the RADE encoded BBFM
over AWGN and fading channels, and compare results to analog FM.
In Section 6 we describe a demonstration system running over radio
hardware and provide links to speech samples from our system, ana-
log FM, and digital LMR systems for comparison.

2. DESIGN

RADE uses 20-dimensional feature vectors f that consist of 18 Bark-
scale cepstral coefficients, the pitch period, and a voicing parameter
[10]. The RADE encoder and decoder form an autoencoder that is
trained to minimise the reconstruction loss L(f , f̂) between the in-
put features f and the decoded features f̂ , as defined in Eq. (12)
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Fig. 3. d = 80 ASK symbols from RADE encoder representing
40 ms of encoded speech. The encoder symbols are continuously
valued and not part of a discrete constellation.

of [6]. The feature vectors f are generated every 10 ms, concate-
nated, and passed to the RADE encoder every 40 ms (frame rate of
25 Hz). They are transformed to a d = 80 dimensional ASK symbol
vector z by a stack of 1D convolutional (conv) and gated recurrent
units (GRU), arranged in a DenseNet-like [11] topology. The RADE
encoder and decoder are the same as employed for our HF work;
further details are provided in [7].

The feature vectors f are updated at 100 Hz, and the dimension
d = 80 ASK symbol vectors z at 25 Hz, i.e. a symbol rate of Rs =
2000 symb/s for the payload speech information. The resources for
the ML processing are around 1 Mbyte of read only storage and 32
million multiply-accumulates (MMACs) each for the encoder and
decoder, with overall CPU load being dominated by the FARGAN
vocoder (300 MMACS) [7].

Our system is not sensitive to the design of the pulse shaping
filters, apart from the assumption that they minimise inter-symbol
interference (ISI). Not shown in Figure 2 are other components such
as the DAC/ADC, RF frequency translation, IF filtering, limiter and
power amplifier. All of these components and the pulse shaping fil-
ters are assumed to have a unity transfer function with respect to
the ASK pulses and minimal impact on system performance. As is
common with other digital-over-BBFM systems, no de-emphasis or
pre-emphasis is employed. All blocks not marked RADE are imple-
mented with classical analog or digital signal processing, common to
existing analog or digital FM radios, and requiring modest amounts
of CPU and memory compared to the machine learning (ML) com-
ponents.

3. BBFM CHANNEL MODEL

In this section we develop a linearised model of the BBFM signal
processing in AWGN and multipath fading channels to support sim-
ulation and training. We assume an ideal FM receiver that is sensitive
only to frequency modulation of the received signal - a reasonable
assumption in practice due to the availability of low cost FM demod-
ulators with good performance.

Above threshold, the signal to noise ratio (SNR) at the output of
the FM demodulator as a function of the input carrier to noise ratio
(CNR) is given by [12]:

SNR = 3β2x2CNR (1)
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where β = fd/fm is the modulation index, fd is the maximum devi-
ation, fm is the maximum frequency of the modulation signal x(t),
x2 is the mean power of x(t), and x(t) is constrained to have a peak
of 1 which corresponds to the maximum deviation fd. For sinu-
soidal modulation (common for testing) where x(t) = Acos(ωmt),
x2 = A2/2. Practical FM receiver measurements are often per-
formed using sinusoidal x(t) with A < 1, e.g. A = 0.6. Equation
(1) holds above a threshold SNR which is typically around 12 dB at
the FM demodulator output.

The demodulator input CNR is:

CNR =
C

N0fm
(2)

where C is the carrier power, and N0 the spectral noise density.
Note the noise power is measured in the bandwidth of the modu-
lating signal fm. The demodulator output SNR is also measured in a
noise bandwidth of fm. The somewhat counter-intuitive convention
of measuring input CNR in the bandwidth of the modulating signal
(rather than the modulated FM signal) allows a simple comparison
to linear modulation methods such as AM and SSB [12].

In this paper, we will express SNR as a function of the received
signal power R in milliwatts. Expressing the demodulator input
CNR as a function of R, and defining the spectral noise density as
the thermal noise N0 = kT we obtain:

CNR =
R

103kTFfm
(3)

where k is the Boltzmann constant, and T = 274 K, and F is the
noise factor of the radio. Substituting into (1):

SNR =
3β2x2R

103kTFfm

SNRdB = RdBm +GFM

GFM = 10log10

(
3β2x2

103kTfm

)
−NFdB

(4)

where the noise factor F has been expressed in the more convenient
noise figure NFdB = 10log10(F ). Using some typical values for a
LMR receiver as NFdB = 5 dB, fd = 2.5 kHz, fm = 3 kHz, and a
sinusoidal modulation signal with A = 1, x2 = 0.5, we obtain:

SNRdB = RdBm + 134.41 (5)

For example at the threshold SNRdB = 12 dB, RdBm = −122.41 dBm.
Our previous experiments show the HF RADE system [7] can

provide high quality speech at around 0 dB SNR, suggesting we have
ample link margin and should obtain high quality speech over the
BBFM channel down to the threshold SNR.

Consider a typical LMR channel from a base station transmitter
to a receiver that is pedestrian or vehicle mobile. The propagation
path will typically not be line of site, but will reflect off several ter-
restrial objects (such as buildings) to reach the receiver. The relative
phase shifts of the paths will result in multipath fading, which due to
the receiver movement will be time varying. The multipath channel
typically evolves slowly (e.g. a bandwidth of a few 10’s of Hz at 60
km/hr) compared to the symbol rate (kHz), so the rate of change in
phase has only a trivial impact on the output of the FM demodulator
compared to the data symbols and can be ignored. We can therefore
model the multipath channel as Rayleigh distributed magnitude fad-
ing |H| and AWGN noise added to the FM carrier. We have chosen

RADE
Encoder

+

×Eq. (11)
& (12)

RADE
Decoder

L(f , f̂)

f z ẑ f̂

RdBm

|H| σs N (0, 1)

Fig. 4. Linearised BBFM model. The fading |H| modulates the
noise about the set point defined by RdBm via Eq. (11) & (12); the
magnitude of the symbols z is set by the deviation fd and remains
constant. The loss function L(f , f̂) is used during training to min-
imise end to end distortion of the vocoder features.

the two path fading model described in the faded channel simulator
section of [13]:

y(t) = x(t)G1(t) + x(t− d)G2(t) (6)

where x(t) is the signal from the transmitter, and y(t) is the output
of the multipath fading model. G1 and G2 are two band-limited
complex Gaussian signals with Doppler Spread bandwidth Bds, and
d is the delay spread (path delay) in seconds. Bds is derived from
the vehicle speed as:

Bds = 2fcv/3× 108 (7)

where fc is the carrier frequency and v is the vehicle speed in meters
per second. By taking the z-transform |H| can be computed as:

|H| = |G1 + e−jdFsG2| (8)

G1 and G2 are time varying and updated at a suitable sample rate.
To simplify simulation and training we model the filtered re-

ceived symbols from the FM demodulator as the transmitted sym-
bols with additive Gaussian noise:

ẑ = z+ n (9)

where n is a vector of noise samples such that the power of each
noise sample is time varying:

ni = σi
sN (0, 1) (10)

Note this approximates the triangular spectra (noise power increas-
ing with frequency) of FM noise [12, p. 457] with flat noise of the
same power. In the following we omit the sample index i for clar-
ity such that σs = σi

s. The mean magnitude and hence power of
each symbol in ẑ at the output of a FM demodulator is a function of
the deviation and not the channel CNR. Thus as the CNR is modu-
lated by fading, the mean value of each symbol in ẑ will be constant,
however the FM demodulator output SNR will change, implying that
output noise power σ2

s is modulated as a function of |H| (Figure 4).
Fading may push the input CNR beneath the demodulator

threshold. At this point the SNR drops rapidly, and the noise
becomes impulsive rather than AWGN. Except for rare deep fades,
our system is designed to operate above threshold. For simplicity of

3
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Fig. 5. Piecewise SNR versus RdBm for FM demodulator model
in (11) with β = 2.5/3, a sinusoidal modulation signal x(t) with
A = 1, NFdB = 5 dB, for an AWGN channel (H = 1).

training, we approximate the demodulator SNR using a piecewise
linear model where SNR drops rapidly beneath a received power
threshold TdBm corresponding to a demodulator output SNR of
12 dB:

SNRdB =

{
R′

dBm +GFM, R′
dBm ≥ TdBm

3R′
dBm +GFM − 2TdBm, R′

dBm < TdBm

R′
dBm = RdBm +HdB

(11)

where RdBm is the mean (set point) received power, and HdB =
20log10|H| is the current magnitude of the fading channel, and
TdBm = 12 − GFM. In the sub-threshold region (second clause of
(11)) a gradient of 3 was selected. As the theoretical performance
of the FM demodulator in the sub-threshold region is highly non-
linear and signal dependent, the gradient of 3 was selected as a good
approximation to real, measured systems.

Figure 5 plots (11) for an AWGN channel (H = 1).
For simulation of the RADE system over the BBFM channel,

we approximate the combined effect of the pulse shaping Tx and Rx
filters as simple band limiting to the symbol rate Rs. Table 1 con-
tains the model parameters we have used for analog FM and RADE
simulation over the BBFM channel model.

To calculate the noise power to apply in simulation we solve for
σs:

S

σ2
s

= SNR

σs =
A√
SNR

(12)

where A is the amplitude of the symbol corresponding to maximum
deviation fd. As |H| evolves over time, σs should be re-calculated
for every symbol using the latest sample of |H|. The channel simu-
lation procedure is:

1. Select a set point (mean) RdBm and vehicle speed.

2. Generate a set of |H| samples at the symbol rate Rs based on
a vehicle speed from the fading channel simulator (8).

3. Calculate SNR for each |H| sample using (11).

4. Set σs for each symbol in the set using (12).

Table 1. Channel Model parameters
Parameter Analog FM RADE
Carrier frequency fc 450 MHz 450 MHz
Symbol rate Rs - 2000
Deviation fd 2500 1800
Maximum x(t) freq. fm 3000 2880
Noise figure NFdB 5 5

BPF
300-3000

Pre-
emphasis Limiter BPF

300-3000

De-
emphasis+BPF

300-3000

Input
Speech

Output
Speech

N (0, σ2
s)

Fig. 6. Analog FM simulation. The linearised BBFM model from
Eq. (11) & (12) is used to obtain σs.

5. Apply noise to each symbol using (9).

To support comparative testing, analog FM samples can be sim-
ulated with the same linearised model as the RADE system, with the
noise scaled such that the SNR was referenced to a noise bandwidth
fm Hz. Speech is band pass filtered and limited to simulate the sig-
nal processing in a typical commercial FM radio. Typical peak to
average power ratio (PAPR) of the speech tested here is 15 dB be-
fore compression and 8 dB after compression.

For a given RdBm, Eq. (11) provides the demodulator output
SNR. To calculate Gfm, we use A = 1, x2 = 0.5. The SNR given
by Eq. (11) has a noise power measured in a bandwidth of fm; the
simulated noise is generated at Fs = 8 kHz with the same noise
density. Speech samples are gain controlled so the peak level just
reaches A = 1, which results in a measured x2 = 0.07 for speech
signals, around 8 dB less (equivalent to the speech PAPR) than the
x2 = 0.5 for sinusoidal modulation.

4. TRAINING

The linearised BBFM model shown in Figure 4 was used for training
the encoder and decoder parameters using the loss function L(f , f̂)
from [6]. We used a 205 hour speech dataset divided into 4 second
sequences for training [6]. For each 4 second sequence, we chose a
random set point received signal level uniformly distributed over a
20 dB range −100 < RdBm < −120 to encourage operation at a
range of SNRs.

The fading model samples were calculated using a worst case
fading simulator path delay d = 200 µs and Doppler spreading
bandwidth corresponding to a single vehicle velocity of 60 km/hr
[13]. We denote this channel lmr60. Despite training at a single
simulated velocity, good results (Figure 7) were obtained when the
model was tested at a range of simulated velocities between 30 and
120 km/hr, and on AWGN (non fading) channels.
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and Codec 2 at 3200 bit/s with no bit errors as controls.

5. ASR EVALUATION

This section describes our evaluation of the RADE-BBFM system
and comparison to analog FM. We have not included a digital LMR
protocol as we had difficulty obtaining a full LMR software stack
for simulation. Instead we argue that due to similar speech quality
[2][3], analog FM is a reasonable proxy for existing digital LMR
systems. We have however included audio samples from a hard-
ware implementation of a digital LMR protocol in our demonstration
(Section 6).

Since intelligibility is the primary goal for LMR, we use Auto-
matic Speech Recognition (ASR) to evaluate the performance of the
proposed system [7]. Five hundred samples from the Librispeech
dataset [14] were passed through RADE and analog FM simulations
at a range of received signal levels using the AWGN and lmr60
channels. The linearised channel model derived above was used for
these simulations. The output speech was post processed by Whisper
ASR system [15], and the Word Error Rate (WER) measured. The
Librispeech speech and lmr60 model datasets used for the evalu-
ation were not part of the training dataset. Hilbert compression is
applied to the input speech samples for the analog FM simulation,
but not the RADE simulation.

Fig. 8 presents the results. Compared to analog FM, RADE is
very robust to multipath fading. By drawing lines at constant WER
gains of 10 dB can be observed. The WER of RADE approaches the
WER of the baseline FARGAN vocoder at high SNRs. The Codec
2 vocoder [16] control simulates the best case performance of clas-
sical DSP vocoders employed in current digital LMR protocols. As
expected, it matches the WER of analog FM for strong signals.

6. UHF RADIO DEMONSTRATION

In this section we describe a demonstration of RADE over UHF ra-
dio hardware. Our demonstration waveform sends 4800 symbols/s
over the BBFM channel (a common symbol rate for digital LMR
systems), divided into 40 ms frames, or 192 symbols/frame. The
RADE information is sent using 80 symbols/frame, and a 24 symbol
unique word is used for frame sync. The remaining symbols are un-
used in our system but available for ancillary services such as data
and station identification. Conventional DSP techniques have been
used to perform frame sync and timing estimation.

A pair of commercial off the shelf UHF analog FM LMR radios
were configured to provide access to the FM modulator and demodu-
lator. The same radios can be configured to use analog FM to provide
a controlled comparison between analog FM and RADE on identical
hardware. AWGN noise is generated by physical processes in the ra-
dio receiver front end. To provide adequate RF isolation the transmit
signal is frequency shifted 20 MHz using a mixer and signal genera-
tor. The signal generator drive level to the mixer is used to establish
the set point level RdBm. To implement fading the signal generator
is amplitude modulated by an arbitrary waveform generator (ARB)
driven by calibrated fading magnitude samples generated using Eq.
(8).

RADE, analog FM, and DStar [17] (DStar is a digital LMR sys-
tem) were tested on AWGN and lmr60 channels at a range of re-
ceived signal levels. In each instance the received levels were con-
firmed by a calibrated spectrum analyzer. For each test, a 10 second
file containing 4 sentences (2 spoken by male, 2 by a female) was
played through the system in real time.

A selection of demonstration audio samples are available on-
line at [18]. Informal listening tests using the demonstration samples

5
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Fig. 9. Configuration for UHF radio demonstration. We inject and
sample RADE symbols z and ẑ at the analog FM modulator and
demodulator.

show RADE outperforming analog FM and the DStar digital LMR
system by a large margin.

7. CONCLUSION

In this paper we have described a ML based system for speech com-
munication over the ubiquitous, low cost BBFM radio architecture.
Simulations and our demonstration over real radio hardware indi-
cate it outperforms analog FM on AWGN and multipath channels by
a significant margin. This provides a “drop in” upgrade path for ana-
log FM and classical DSP digital radios based on BBFM hardware.
For the digital radio case the discrete ASK symbols from classical
vocoder and FEC components can be replaced by the RADE sym-
bols to provide an upgrade in speech quality and robustness.

The source code for the RADE BBFM system (including chan-
nel simulation and model training) is available on GitHub [19] in
the dr-bbfm branch. We would like to acknowledge the contribu-
tion of George Karan in conceiving and developing this project and
supporting the UHF radio demonstration.

The complexities and non-linearities in BBFM systems make
exact modelling difficult, so several approximations were made to
simply training and simulation. Our simplified linear model does
not take into account non-linearities such as the effect of IF filtering
on the baseband waveform; we use an approximation of flat versus
triangular noise spectra, and a simplified model of the sub-threshold
region of FM demodulator operation. The expressions for FM SNR
[12] are only tractable for sine wave modulating signals. However
the significant improvements we have achieved over analog FM indi-
cate these approximations are acceptable, and more accurate models
of the BBFM process may not be justified.

The CPU requirements for RADE are high compared to classical
vocoders. As further work investigating optimisations of the RADE
encoder, decoder and FARGAN vocoder could significantly reduce
this CPU complexity. However the CPU and memory requirements
are already a fraction of that available in common personal commu-
nications devices such as mobile (cell) phones, and we anticipate
will soon be commonplace in modern LMR radios.

Further work includes research into repeater operation and
trunking RADE voice traffic over digital networks. This would
require quantising the continuously valued ASK symbols to a set
of discrete levels. As the waveform is robust to significant AWGN
noise we anticipate quantisation noise will not unduly affect perfor-
mance.
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